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Abstract 

A problem from fluid mechanics is used in an engineering analysis course to expose senior 

mechanical engineering students to several important issues related to the use of sophisticated 

general-purpose analysis software.  The problem, which models incompressible flow in a pipe 

network with both parallel and series branches, results in a very large system of coupled, 

nonlinear algebraic equations (the formulation provided here results in seventy variables).  Once 

a well-posed mathematical problem has been specified, a numerical solution is obtained using a 

general-purpose nonlinear equation solver called EES.  However, obtaining converged, 

reasonable solutions to the specified problem requires a significant amount of care, both in 

setting up the equations and in controlling the solver.   

 

Introduction 

Numerical analysis has become a common tool for solving engineering problems
1,2

.  As a result, 

today’s undergraduate student is able to quickly solve problems that would have required 

significant expenditures of time and resources a generation ago.  However, the availability of 

user-friendly, high-level solution packages can also give students a misguided sense of 

confidence in their numerical solutions to complex problems.  This paper describes an 

assignment requiring students to develop and solve a large system of coupled, nonlinear 

algebraic equations governing flow in a piping network.  The problem offers several important 

lessons about numerical methods.  First, it was necessary to formulate the governing equations 

carefully to avoid unnecessary complexity.  In addition, achieving convergence required 

judicious selection of initial guesses and careful control of the iteration process.  Finally, several 

groups obtained result which (for a variety of reasons) were not correct, but were not blatantly 

wrong - emphasizing the essential role of validation in the numerical process.  After completion 

of the assignment, students were asked to identify the primary obstacle encountered in solving 

the problem.  Their responses suggest that the assignment led most students to an increased 

appreciation for the complexities of numerical methods. 

 

Course Description 

ME-4511 Engineering Analysis is taken by mechanical engineering students during the fall 

semester of their final year.  The course is intended to serve as a one-semester “analysis 

capstone” course to complement the year-long design capstone that has long been required for 

mechanical engineering students at Ohio Northern University.  The course also serves as a partial 

replacement for two courses (previously taught under the quarter system):  an engineering 

problem-solving course taught in the fall of the junior year, and a numerical methods course 

taught in the spring of the junior year. 

 

In addition to lectures and homework on a variety of analytical and numerical problem-solving 

tools, students are assigned several “extended problems.”  These extended problems are intended 
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to draw upon knowledge gained both in ME-4511 and in previous courses.  All of these extended 

problems require application of prior knowledge to more complex problems, while some also 

require solution of ambiguously-defined problems; some of the problems cross the boundaries of 

traditional mechanical engineering courses.   

 

The course was taught for the first time during the fall semester of 2012, with an enrollment of 

20 students.  Students are allowed to work in teams of two to solve the extended problems, 

although on the particular problem discussed here there were two individual submissions.    The 

course outcomes stated on the syllabus include the following: 

Upon completion of the course, students will be able to: 

1.solve engineering problems using a variety of analysis methods and software tools. 

2.apply numerical techniques such as Runge-Kutta methods and finite-difference methods to 

obtain solutions to differential equations that apply to engineering practice. 

3.solve problems which are not well-defined, or do not have an obvious closed-form solution. 

4.solve problems which cross the traditional boundaries of mechanical engineering courses. 

The assignment described in this paper addresses outcome 1 by requiring students to solve a 

large set of coupled, nonlinear algebraic equations using the software package EES (Engineering 

Equation Solver).  The assignment also addresses outcome 3 in that, although the underlying 

physics is well-defined, the problem can be formulated several ways, some of which are more 

readily amenable to numerical solution than others. 

 

Problem Assignment 

The problem statement was presented to the students in the following form: 
Consider the fluid pipe network shown below, with one inlet at a pressure P1= 60 psig = 413,700 

Pa and four outlets (at points 4, 6, 8, and 10), all at atmospheric pressure.  All pipes have a 

diameter of 0.1 m and are made of cast iron.  The lengths of each section are LA = 5m, LB = LD = 

LF = 3m, LC = LE = LH = LJ = 2m, and LG = LI = 5m.  There are valves at each outlet with loss 

coefficients KLC = KLE = KLH = KLJ = 0.2 (although these should be adjustable).  The working fluid 

is water.  All pipe sections are at the same elevation.  Neglect minor losses associated with fittings 

other than the valves. 

     a)  Determine the volumetric flowrate at each exit. 

     b)  Set the flowrates at the exits to QC = QE = QH = QJ = 0.05 and determine the required 

valve settings (KLC, KLE, KLH, KLJ) 

 

Figure 1:  Problem statement for the Pipe Network extended analysis problem. 

Although flow direction is suggested by the arrows, it may be possible (for part a)  

to obtain negative flowrates. 
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Each team was required to submit a memo report describing the appropriate set of equations 

required to define a well-posed mathematical problem, along with a description of the solution 

procedure.  It was recommended that the problem be solved using EES (Engineering Equation 

Solver), a coupled nonlinear equation solver that students had experience with in several prior 

engineering courses.   

 

The governing equations and supporting information needed to solve the problem were covered 

in a prerequisite course, ME-3311 Fluid Mechanics.  However, while pipe flow in parallel and 

series was discussed in that course, the current problem is much larger in scale.  As will be 

discussed in the next section, the problem (as formulated by the author) consists of ten governing 

equations and twenty supporting equations, plus a number of variable definitions, resulting in a 

large system of coupled, nonlinear equations. 

 

In their previous experience with EES, students were able to solve a wide range of problems in 

thermodynamics, fluid mechanics, machine design, and dynamic systems without much regard 

for underlying numerical issues such as initial guesses and convergence.  However, due to the 

complexity of the problem described in Figure 1, obtaining an accurate solution required a great 

deal of care both in reformulating the mathematical problem as an EES problem and in 

controlling the iterative solution procedure. 

 

Solution 

If we assume the water behaves as an incompressible fluid, applying the steady-state 

conservation of mass equation at node 1 gives: 

 

 GBA QQQ 
 

 

where Qi is the volumetric flowrate (in m
3
/s) in pipe segment i, with subscripts corresponding to 

the segment lettering shown in Figure 1.  Since the diameter of all sections is constant, we can 

use velocities instead of flowrates.  Although this may seem trivial, it actually reduces the 

complexity of the numerical problem by reducing the number of primary unknowns (since 

flowrate becomes a secondary value obtained from the velocity).  Applying conservation of mass 

at each node results in five equations for the unknown velocities Vi: 

 
 

GBA VVV 
          (1a) 

 DCB VVV 
          (1b) 

 FED VVV            (1c) 

 IHG VVV 
          (1d) 

 IFJ VVV 
          (1e)

 

 

The principle of conservation of energy for pipe flow problems is usually expressed as the head 

loss equation.  Applying the head loss equation between the inlet at state 1, and the exit at state 4 

gives: 
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where Pj is the pressure at inlet or exit j (in Pa),  is the fluid density (in kg/m
3
), g = 9.81 m/s

2
 is 

the gravitational constant, Vj is the average velocity at the inlet/exit, zj is the elevation of the 

inlet/exit, and hL is the head loss due to friction.  The subscripts correspond to the pipe junction 

numbers shown in Figure 1.  Since the inlet pressure is specified as a gage pressure and the exits 

are all at atmospheric pressure, the exit pressure is zero.  Note that V1 = VA, V4 = VC, etc.  Since 

there are no elevation changes, the head loss equation reduces to: 
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where fi is the friction factor in pipe segment i, Li is the length of the pipe segment, D is the 

diameter, Vi is the average velocity within the pipe segment, and g is the gravitational constant.  

The terms hLA and hLB correspond to the major head losses due to friction in the corresponding 

pipe section.  The term hLC includes both the major losses and the minor loss due to a valve with 

loss coefficient KLC. 

 

Applying the head loss equation between state 1 and each exit (including separate equations for 

both the upper loop and the lower loop for states 1→10) results in more five equations for the 

unknown exit velocities: 
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Although these equations could be solved for Vi, taking the square root of the right-hand side can 

lead EES to fail to converge if these terms becomes negative during iteration.  While it would be 

possible to write the argument of the square root as a separate variable and limit it to non-

negative values, this is not necessary since the formulation shown in equations 2a-e provides a 

convergent solution. 

 

Equations 2a-e have introduced ten new unknown head loss terms (hLi).  The definition of the 

head loss due to friction provides ten additional equations: 
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These equations have in turn added ten unknown friction factors fi.  The standard approach for 

calculating the friction factor f for turbulent flow in pipes is to use the Moody chart (which is not 

useful for a numerical solution) or the Colebrook equation
3
: 
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where  is the roughness of the pipe (a property of the pipe material), and Re is the Reynolds 

number (defined below).  Unfortunately, this equation is implicit in f, which causes numerical 

problems when implementing it in our EES solution.  An alternative is the Haaland equation, 

which is reported to provide friction factor values within 2% of the Colebrook equation
3
: 
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This can be solved explicitly for f: 
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Implementing this equation directly into EES causes problems because the argument of the 

logarithm can become negative during iteration, even though the converged value is positive.  In 

addition, during iteration the negative exponent caused an error due to division by zero.  These 

numerical difficulties can be overcome by separating the Haaland equation into three separate 

variables.  As a result, the equations for the friction factor fi in pipe segment i have the following 

form: 
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This formulation allows the iterative values of these variables to be restricted to non-negative 

numbers through the EES “Variable Info” window (Figure 2). 

 

 
 

Figure 2:  The EES Variable Info window. 
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The Reynolds number for each pipe segment is defined as: 

 



 DVi
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Finally, the numerical model is completed by including the relationship between velocity and 

flowrate: 
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Equations 1-8 define the set of seventy coupled equations to be solved in EES.  

 

Obstacles to Solution 

Most student teams were able to produce a properly developed mathematical model with little or 

no assistance from the instructor, instead relying primarily on knowledge gained in the 

prerequisite fluid mechanics class (and the corresponding textbook).  However, all of the 

students required some help in obtaining the correct numerical solution.  Due to a change in 

academic calendars (transitioning from quarters to semesters), enrollment in the fall 2012 

semester was smaller than usual.  As a result, the instructor was able to review the solution of 

each student group in depth.  The following is a summary of significant issues encountered by 

the students.  This list does not include typos and other programming errors. 

 

Issue 1:  Applying conservation of mass to the overall system.  As described in the 

development of equation 2 above, applying the head loss equation (conservation of 

energy) between the inlet and each exit results in four equations.  An additional equation 

is required, which can be obtained by applying the head loss equation between the inlet 

and one of the exits twice, with each equation representing a different flow path 

(equations 2c and 2e).  However, several student groups obtained the required additional 

equation by applying conservation of mass to the overall system (Qinlet = Qexits), which 

does not lead to a convergent solution.  In fact, the overall conservation of mass equation 

is simply a linear combination of equations 1a-e, so this formulation does not result in a 

well-posed problem. 

 

Issue 2:  Use of the Colebrook equation for friction factor leads to an EES program that 

does not converge.  The Colebrook equation is listed in many standard Fluids texts as the 

primary equation for calculating friction factor, which led several groups to use this 

approach.  However, the implicit nature of the Colebrook equation results in a system of 

equations that seems to be beyond the capability of the EES solver. 

 

Issue 3:  Implementation of the Haaland equation for friction factor as a single equation 

leads to a program that does not converge.  As described in the development of equations 

4-6 above, the iterative nature of the EES solver leads to a program that invariably either 

attempts to calculate the logarithm or the inverse of a negative number.  Since this issue 

obviously does not occur for the converged vales, the problem may not occur for some 

sets of initial guesses.  However, every student group that used a single equation for the 
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Haaland equation encountered a convergence error, suggesting that choosing a set of 

initial guesses that avoids these problems is extremely difficult. 

 

Issue 4:  Choosing an appropriate set of initial guesses is necessary for convergence.  As 

an iterative solver, EES begins with a set of initial guesses for each variable.  The default 

value is 1, but this can be modified by the user.  The default value is sufficient for most 

variables, but it is necessary to set the Reynolds numbers to a relatively large value (e.g. 

1000) in order to converge.  The converged values of Reynolds number in each pipe 

section are on the order of 10
5
 - 10

6
, so it is not necessary for the initial guess to closely 

match the converged values. 

 

Issue 5:  Setting inappropriate convergence criteria leads to solutions which have not 

converged, yet may not be obviously incorrect.  After eliminating issues 1-4, several 

groups obtained convergent solutions which were not correct, but were of the same order 

of magnitude as the correct solution.  In some cases this was due to typing errors, but in 

other cases the convergence criteria had been eased by the students - probably while 

trying to fix divergence due to one of the previous issues.   

 

The significant issues described above relate either to developing a well-posed problem (Issue 1), 

writing the problem in a format that allows control over the iterative process (Issues 2-4), or 

properly understanding convergence of iterative analysis methods (Issue 5).   

 

Conclusion 

In addition to the explicit outcomes stated in the introduction, the author hoped to accomplish 

two additional informal objectives with this assignment.  The first objective was to develop a 

sense of healthy skepticism when using numerical methods to solve engineering problems.  The 

availability of powerful and user-friendly software such as EES, while valuable to the practicing 

engineer, can also appear to provide deceptively simple solutions to complex problems.  The 

second objective was to develop each student’s confidence in his or her ability to solve complex 

engineering problems.  In most undergraduate courses, the students appear to rely heavily on 

“solution by example.”  When a problem does not closely match an example that has been seen 

before, there is a tendency in some students to assume that a solution is beyond their ability.  All 

of the extended problems in ME-4511 Engineering Analysis address this issue to some extent by 

requiring students to solve problems of greater complexity than those found in the typical 

introductory engineering textbooks.  The problem presented in this paper does so by increasing 

the scale of the problem far beyond that which can be solved by hand. 

 

This assignment was successful at accomplishing the first of these two objectives.  One lesson 

clearly learned by every group is that a seemingly simple-to-use analysis tool such as EES can 

have a great deal of complexity that is hidden from the casual user.  Most of the students had 

never encountered a convergence error in their previous use of EES, and most did not clearly 

understand the iterative approach used by the solver.  Understanding this iterative approach 

becomes critical when a solution is strongly dependent on initial conditions, or when it is 

necessary to restrict intermediate values to a certain range (e.g. avoiding non-negative numbers 

while iterating). 
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From a practical standpoint, this assignment was effective at teaching students some of the 

complexities of numerical methods.  Every group was required to produce an EES model that 

produced the correct solution, even though for some students this required several attempts and a 

significant amount of assistance from the instructor.  The result was that, rather than giving up 

after their first attempt, they were forced to identify (or at least acknowledge) and correct the 

problems in their model.  When asked to identify the major obstacles they encountered in 

obtaining the correct solution, students provided a range of responses that correspond to some 

extent to the issues described in the previous section.  Table 1 below shows a summary 

classification of the responses. 

 

Table 1:  Student identification of significant obstacles to 

obtaining the correct solution. 

Obstacle (Paraphrased) 
Number of 

times mentioned 

Need to set appropriate initial guesses 12 

Writing governing equations in a suitable form 7 

Need to set limits on variable range during iteration 4 

Identifying an incorrect solution 1 

Obtaining convergence 1 

 

It is more difficult to conclude whether the second objective - increasing the students’ confidence 

in their ability to solve complex problems - was achieved to a significant extent.  On the one 

hand, all of the groups were required to obtain the correct solution.  However, several groups 

required a significant amount of assistance from the instructor.  In addition, a degree of 

frustration was clearly indicated in many of the responses to the survey conducted after the 

problem was completed.  Some thought may be needed to develop strategies to reduce this 

frustration to the point where it doesn’t overwhelm any sense of accomplishment the students 

might feel.  One such strategy that will be implemented is to require students to present their 

mathematical model (the equations to be entered into EES) as a preliminary assignment.  This 

should increase the distinction between modeling issues and numerical problems.  A second 

strategy will be to spend more class time discussing iterative numerical methods, including the 

importance of initial guesses and the need to limit variables to certain ranges to avoid division by 

zero or similar mathematical problems. 
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