
Teaching Real Time System Scheduling using low cost microprocessor board

Subramaniam Ganesan1, Xuewen Ding1, Andrew Rusek1
1 Department of Electrical and Computer Engineering

Oakland University, Rochester, MI 48309

Emails: ganesan@oakland.edu, rusek@oakland.edu, , dingxw1@126.com

Abstract

Objectives of the Real-Time Systems course reflect what we expect the students to learn from

the course. We make sure that it is possible to assess the objectives at the end by internal or

external expert. We need to make sure that the teaching activities and feedback from the students

are synchronized with the objectives.

One of the objectives of this course is: ´Know the various task assignment and scheduling

methods. For example RM and EDF scheduling”

We describe here a simulation software tool and a low cost ARM microprocessor board with

MDK-ARM Keil development tool to teach the scheduling concepts effectively. A number of

experiments to learn real-time task scheduling concepts are explained. Use of Real-Time

scheduling in automotive embedded system applications is described and justifies the importance

of our teaching techniques. This emphasizes active learning instead of passive learning.

Introduction

Real time system course is a graduate level course and it emphasizes hard and soft real time

computer system design for uniprocessor embedded system applications and distributed real time

systems [1-6]. Topics covered include characterizing real-time systems, performance measure,

task assigning, scheduling, Fault tolerant scheduling, run-time error handling, run-time support,

kernel, real time databases, real-time communication, software development techniques;

practical applications.

Course Objectives are:

Upon completion of this course students will be able to:

1. Know the definition and characteristics of Real Time systems

2. Know the various task assignment and scheduling methods. For example RM and

EDF scheduling.

3. Become familiar with Real Time system development tools like Matlab RT tool box,

ETAS tools

4. Know the important characteristics of Real Time Operating System

5. Know about the RT System requirement, design, and performance analysis.

mailto:ganesan@oakland.edu
mailto:rusek@oakland.edu
mailto:dingxw1@126.com

In the following sections, we show how we make sure that the students learn the objective

number two on scheduling. Details of course topics are given in the appendix A.

Scheduling

There are many task scheduling algorithms and each of them makes sure that the tasks are

schedulable and they meet the expected deadline [8-11]. Three most popular algorithms are

defined below.

Rate Monotonic Scheduling Algorithm

The rate-monotonic scheduling algorithm schedules periodic tasks using a static priority

policy with preemption. If a lower-priority process is running and a higher-priority

process becomes available to run, it will preempt the lower-priority process. For each

process, its priority=1/pi(inverse of the period).

Deadline Monotonic Scheduling Algorithm

Deadline Monotonic Scheduling Algorithm schedules periodic tasks or aperiodic tasks

using a static priority policy with preemption. For each process, its fixed priority =

1/di(inverse of the relative deadline). That is, the shorter the relative deadline, the higher

the priority.

Earliest-Deadline-First Scheduling algorithm

Earliest-Deadline-First scheduling dynamically assigns priorities according to deadline. The

earliest the deadline, the higher the priority. Algorithm: At each moment of time t, schedule the

task whose deadline is closest to t. Ties can be resolved arbitrarily

Scheduling Simulators

We describe below task scheduling simulators that are free and used for teaching scheduling.

One is called CPUSS [12] and the other is Cheddar [13].

CPU Scheduling Simulator (CPUSS) is a framework that allows you to quickly and easily design

and gather metrics for custom CPU scheduling strategies. CPUSS records the following metrics

about your scheduling algorithm:

 Average process wait times

 Idle CPU time

 Busy CPU time

 Wait time mean

 Wait time standard deviation

 Response time mean

 Response time standard deviation

 Turnaround time mean

 Turnaround time standard deviation

 Throughput stats

 Throughput mean

 For each process

o Arrival time

o Start time

o Completion time

o CPU activity

o Burst time

o Id

o Priority

o Wait time

o Turnaround time

o Response time

The core features CPUSS allows to:

 Define the processes to schedule

 Auto generate the processes to schedule (varying burst time properties)

 Log results to SQL Server

 Hook into events

o Simulation Started/Completed

o Process Started/Preempted/Resumed/Completed

CPUSS support the following strategies:

 First Come First Served

 Round Robin (time quantum can be defined)

 Shortest Job First*

 Priority First*

 SJF with Priority Elevation rule (threshold can be defined)*

CPUSSRG allows to quickly and effeciently generate a report and view some of the key stats

from the simulation (avg/std dev/var wait times, cpu utilization etc). One can run the simulation

many times to get a broader picture of the data for further analysis.

Cheddar Real Time Simulator [13].

Cheddar is a free real-time scheduling tool. Cheddar allows you to model software architectures

of real-time systems and to check its schedulability or others performance criteria. With the

schedulability analysis tool, schedulability can be accessed with both scheduling simulation and

with feasibility tests. Also new real-time scheduling policies or task models can be analyzed.

Cheddar is composed of two independent parts : an editor used to model the real-time system to

analyze, and a framework to perform such analysis.

The editor allows to describe systems composed of several cores, processors which own tasks,

shared resources, buffers and which may exchange messages or communication with buffers.

Cheddar includes its own ADL, namely Cheddar ADL. The framework includes many feasibility

tests and simulation tools. The main analysis tools of Cheddar are the following :

 Analysis with scheduling simulations :

o With preemptive and non preemptive scheduling policies

o With uniprocessor and multiprocessor scheduling policies

o With uniprocessor : Rate Monotonic, Deadline Monotonic, Least Laxity First,

Earliest Deadline First, POSIX queueing policies (SCHED_OTHERS,

SCHED_FIFO and SCHED_RR), Maximum Urgency First, Round-Robin and

several time sharing scheduling policies.

o With multiprocessor : global version of uniprocessor scheduling policies,

Proportionate Fair, EDZL, RUN

o With instruction cache entities

o With different type of tasks : aperiodic, periodic, task activated with a Poisson

process, ...

o With shared resources (and with FIFO, PCP, PIP, IPCP synchronization

protocols)

o Several hierarchical schedulers, such as ARINC 653 scheduling, sporadic server,

polling server, deferrable server

o With task jitters and offsets

o With various task precedencies

 Extract information from scheduling simulation, such as :

o Worst/best/average task response times, task missed deadlines

o Number of preemption, number of context switch

o Worst/best/average shared resource blocking time

o Deadlock and priority inversion

o Worst/average buffer utilization factor, message worst/average waiting time

 Apply feasibility tests on tasks, buffers and shares resources :

o Compute worst case task response time on periodic task set

o Several methods to compute worst case response time with linear and tree

transaction

o Apply processor utilization feasibility tests.

o Compute bound on buffer size (when buffers are shared by periodic tasks)

o Worst case shared resource blocking time

o Memory footprint of software entities

 Shared resources support (both scheduling simulation and blocking time analysis).

Supported protocols : PIP, OPCP, IPCP

 Tools to express and do performance analysis with task dependencies :

o Model task transaction (linear or tree) and compute worst case response time

o Scheduling simulation tasks according to task precedencies

o Compute Tindell Holistic end to end response time.

o Apply Chetto and Blazewicz algorithms.

 Task and resource priority assignment :

o Classical Rate Monotonic, Deadline Monotonic, Audsley task priority assignment

o Task priority assignment according to CRPD

o Shared resource ceiling priority assignment (for PCP like policies)

 Features to allow users to define and handle their own policies :

o User-defined scheduling policies (based on pipeline models or automaton models)

o User-defined task model policies, to express and handle specific task activation

policies

o User-defined analysis on scheduling simulation, to look for specific properties on

scheduling simulation result

 Partitioning algorithms for periodic task set :

o Best fit policy

o General Task fit policy

o Fist fit policy

o Small fit policy

o Next fit policy

ARM Microcontroller board with RTOS for Task Scheduling experiments

STMicroelectronics has many STM32 family of 32-bit Flash microcontrollers and application

development boards at low cost 14,15]. The new boards are fully compatible with the existing

STM32 development ecosystem, including the range of dedicated plug-in application expansion

boards that allow specialized features ranging from motor drives to motion and environmental

sensors to be easily incorporated into the final application. Moreover, they offer unlimited

extension capability via three types of connector: in addition to the Arduino™ Uno and ST

morpho connectors provided by existing Nucleo-64 boards, the new boards include an ST zio

connector. Together, these three connectors give complete access to all of the STM32 general-

purpose I/O pins, allowing easy implementation of any creative function. Selected STM32

Nucleo-144 boards include Ethernet, as well as USB FS OTG ports to ease connections to

local/wide area networks.

The STM32 Nucleo-144 boards allow the entire embedded processing community, from

hobbyists and students to the most experienced professional system developers, to rapidly test,

optimize, and industrialize new applications built around the industry’s most popular, affordable,

and efficient 32-bit microcontroller family. They are compatible with the most popular

development toolchains including IAR EWARM, Keil MDK-ARM, and GCC/ LLVM-based

IDEs such as AC6 SW4STM32 or Atollic TrueStudio.

The first four boards (NUCLEO-F746ZG, NUCLEO-F429ZI, NUCLEO-F446ZE and NUCLEO-

F303ZE) are available now at US$23 for the Ethernet versions and US$19 without Ethernet

Keil MDK Version 5 is the latest release complete software development environment for a wide

range of ARM, Cortex-M, and Cortex-R based microcontroller devices [16,17]. MDK includes

the µVision IDE/Debugger, ARM C/C++ Compiler, and essential middleware components. It's

easy to learn and use. Keil RTX deterministic, small footprint real-time operating system (with

source code), RTOS and supports a few task scheduler, Execution Profiler and Performance

Analyzer. Numerous example projects help you quickly become familiar with MDK-ARM's

powerful, built-in features

Task Scheduling in Automotive

Today’s cars have nearly 40 to 100 microcontrollers to control various functions (Example,

Engine controller, Transmission controller, Display controller, Anti-lock brakes, etc.) [18]. Each

controller collects data from various sensors at certain interval, process them, uses the results to

control outputs and also communicates the sensor values over the CAN bus to other controllers.

This shows that each controller have many tasks to complete at various interval before the

desired deadlines. The students choose some of these controllers and choose multiple task’s

arrival time, execution time, dead line and try to simulate using the simulators and make sure that

the tasks meet the deadlines. They also try to test their concepts using the low cost

microcontroller boards.

Student Participation in Experiments

The students attending the real time systems course do a number of simulation exercises and also

develop small projects using low cost microcontroller boards (example: Traffic controller,

bottling plant controller etc. These activities help them learn the task scheduling, feasibility

analysis, and implementation. This emphasizes active learning instead of passive learning and

also increases creative thinking and productive thinking [19, 20]. They also do oral presentation

on their project and submit a project report.

http://www.st.com/web/en/fragment/sales_and_marketing/e-news/e-news_image/STM32_Nucleo_144_N3784S_big.jpg

Conclusions and how the Students Benefit from this Approach

The lab exercises and projects introduced in the course and simulation exercises have made the

course material easy to understand and fun to learn the application of various scheduling

algorithms. The course evaluations on the course outcomes received very good results.

The concepts learned in this course are useful for graduate students to use in the automotive

embedded system design and testing. This paper provided an overview of simple and effective

ways to teach task scheduling algorithms for real time applications.

References:

1. Phillip A. Laplante, “Real time systems design and analysis”, 4th edition, Wiley InerScience, ISBN 978-0-

470-76864-8

2. Jane W. Liu “Real Time Systems” Prentice Hall, 2000, ISBN: 0-13-099651-3.

3. C.M. Krishna and R.G. Shin, “Real time system” McGraw Hill 1997.

4. Micro C/OS-II, The real time kernel, A complete portable, ROMable, scalable preemptive RTOS by Jean J.

Labrosse, R&D books, Miller Freeman inc., ISBN: 0-87930-543-6; Phone: 785 841 1631.

5. Embeded Systems Building Blocks, 2nd edition, Complete and ready to use modules in C, by Jean J.

Labrosse, R&D books, Miller Freeman inc., ISBN: 0-87930-604-1; Phone: 1-800-788-3123.

6. Jeffrey Tsai and Steve Yang, “ Monitoring and Debugging of Distributed real time system” IEEE computer

Soceity press, ISBN 0-8186-6537-8

7. Java for Embedded System, by Ingo Cyliax, Circuit Cellar magazine, December 2000 and January 2001.

8. Real Time JVM, New Monics Inc., www.newmonics.com

9. Jworks, Windriversystems, Inc, www.wrs.com

10. Java Chip, ajile systems inc., www.ajile.com

11. Valvano, “ Embedded microcontroller system- real time interfacing” Brooks/Cole publisher

12. https://cpuss.codeplex.com/

13. http://beru.univ-brest.fr/~singhoff/cheddar/

14. http://www.st.com/web/en/news/n3784

15. http://www.keil.com/arm/mdk.asp

16. http://www.arm.com/support/university/

17. Embedded Systems: Real-Time Interfacing to Arm® Cortex(TM)-M Microcontrollers 2nd Edition by

Jonathan W. Valvano , July 2015, http://users.ece.utexas.edu/~valvano

18. Ronald Jurgen “ Automotive Handbook”, McGrawHill Handbook, second edition.

19. http://ericbrown.com/critical-thinking-vs-creative-thinking.htm

20. Think Better: An Innovator's Guide to Productive Thinking by Tim Hurson, McGraw Hills companies,

ISBN-13: 978-0-07-149493-9

Appendix A: Real Time Systems Course details

Text book: Phillip A. Laplante, “Real time systems design and analysis”, 4th edition,
Wiley InerScience, ISBN 978-0-470-76864-8
Reference books:
Jane W. Liu “Real Time Systems” Prentice Hall, 2000, ISBN: 0-13-099651-3.

http://www.newmonics.com/
http://www.wrs.com/
http://www.ajile.com/
https://cpuss.codeplex.com/
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.st.com/web/en/news/n3784
http://www.keil.com/arm/mdk.asp
http://www.arm.com/support/university/
http://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Jonathan+W.+Valvano&search-alias=books&field-author=Jonathan+W.+Valvano&sort=relevancerank
http://ericbrown.com/critical-thinking-vs-creative-thinking.htm

C.M. Krishna and R.G. Shin, “Real time system” McGraw Hill 1997.
 COURSE Topics:

 1) Introduction and Basic concepts (1 hr)

 2) Characterization of Real time systems and Tasks (2hr)

 Reference model of Real Time Systems

 3) Task Assignments and Scheduling (6 hr)

 Real time scheduling

 Clock-driven scheduling

 Priority driven Scheduling

 Multiprocessor Scheduling

 4) Real Time Tools

 Real time Java, Matlab Real Time Tool Box , RTAI from ETAS (1hr)

 5) Real time Operating Systems

 RT kernels, Intertask communication and Synchronization

 Memory Management

 Case Study: Win CE, Real time Linux, QNX

 UC/OS II real time kernal (8 hrs)

 6) Real time Communications (4 hrs)

 7) Distributed real time systems (4 hours)

8) Fault Tolerance (1hr)

9) Real time DSP System

 Code composer Studio

 Development Platform (6 hrs)

10) Real Time System Development, Code Warrior software (1 hr)

11) Performance Analysis and optimization (3 hrs)

12) Divisible Load Theory

11) Automotive Applications (4 h)

Biography

Subra Ganesan (ganesan@oakland.edu) is a Professor of Electrical

and Computer Engineering at Oakland University and Director of Real

Time Embedded DSP Systems Lab. He joined the university in 1984.

After graduating from Indian Institute of Sciences Bangalore India, he

served at universities in Germany, and Canada and Indian research

laboratory as a scientist. He does research work in collaboration with

TI, Free Scale, and a few automotive companies and US army. His

research areas include DSP, Embedded Systems, Real Time Systems,

Condition-based Maintenance, and Optimization.

Andrew Rusek (rusek@oakland.edu) is a Professor of Engineering at

Oakland University in Rochester, Michigan. He received an M.S. in

Electrical Engineering from Warsaw Technical University in 1962, and

a PhD. in Electrical Engineering from the same university in 1972. His

post-doctoral research involved sampling oscillography, and was

completed at Aston University in Birmingham, England, in 1973-74.

Dr. Rusek is very actively involved in the automotive industry with

research in communication systems, high frequency electronics, and

electromagnetic compatibility. He is the recipient of the 1995- 96

Oakland University Teaching Excellence Award

Xuewen Ding (dingxw@tute.edu.cn) is an Associate Professor of

Electrical Engineering School at Tianjin University of Technology and

Education, and Director of Electrical Engineering Department. He

received an M.S. in Signal and Information Processing from Tianjin

University in 2003, and a PhD. in Signal and Information Processing

from the same university in 2008. He worked as a visiting scholar at

Oakland University in 2015. Dr. Ding is very actively involved in

Intelligent Information Processing. His research areas include Computer

vision, Machine learning and Real Time Systems.

mailto:rusek@oakland.edu

