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Abstract—The control of several devices and systems to perform a group objective is 

considered multiagent control. It has many applications in unmanned aerial vehicles (UAVs), 

spacecraft, robotics, and vehicular systems. These strategies enable tasks such as flocking of 

swarms, group formation, synchronization, rendezvous, and consensus of systems. Distributed 

control is a strong way to scale these strategies to large systems in an adaptable and 

reconfigurable manner. Instead of having a “centralized brain” of the system, information locally 

available to each agent is used through cooperative control algorithms so that each agent works 

independently to achieve the group objective. 

 

This paper will include a brief introduction to multiagent control and a brief evaluation of a 

control algorithm proposed by Ren et al. utilizing the state information of agents that may be 

modeled as a chain of integrators1. This agent model and its control algorithm has several 

potential applications including the planar vertical takeoff and landing (PVTOL) of aircraft and 

Segway vehicles. Specifically, the control algorithm has the potential to control the takeoffs and 

landings of swarms of fixed-wing aircrafts and the motion of swarms of Segways. 

 

We present an open problem in the resilience of the consensus algorithms proposed for higher-

order integrator agents and demonstrate that they are susceptible to attacks from adversaries. One 

class of attacks on multiagent systems consists of hijacked agents that attempt to subvert the 

group objective by acting abnormally or communicating false and even harmful information. 

Proper resilience to hijacked agents requires that the other agents of the system are still able to 

achieve the desired task. The addition of resilience would improve the safety and security of the 

control protocol in real-world applications. 

 

I. Introduction 

 

Multiagent control has many applications in unmanned aerial vehicles (UAVs), spacecraft, 

robotic, and vehicular systems1. It allows for the formation of teams which can accomplish tasks 

more effectively than any single agent. This teamwork also leads to lowered costs in some 

situations, such as in spacecraft. For example, it is less expensive to launch several small 

payloads than one large spacecraft requiring a multiple-payload platform2. Another benefit of 

multiagent control is due to the systems being programmed to respond immediately to 

environmental factors. This is imperative for UAVs flying outdoors as they experience different 

wind speeds based on the temperature, season, time, location, nearby structures, and other 

factors. These factors cannot be predicted beforehand and some vary for each agent in the 

system. However, the agents in the system can receive enough information from the environment 
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and other agents in order to perform the group objective despite the wind and other external 

influences. Another advantage of these systems lies in their ability to conduct tasks with minimal 

supervision once they have been constructed. The many uses of multiagent control have led to 

continued research to solve complex problems and allow for further implementation in various 

fields1-3. 

 

Multiagent control is utilized for a variety of group objectives including flocking, group 

formation, rendezvous, synchronization, and consensus. Flocking is when a swarm of agents acts 

similar to a flock of birds, as seen in Figure 1. The agents in a flock act as a unit, stay close, and 

avoid collisions3. Group formation control is when agents form and maintain a pattern or shape, 

as shown by the airplanes in Figure 2.  

 

                         
Figure 1:  Flock of birds4                                                    Figure 2:  Airplane formation5 

 

Rendezvous is the task involving agents meeting at a desired place at the same time3. 

Synchronization and consensus are more general duties that involve matching the states of the 

agents of a system1,3. For example, the airplane formation requires each plane to travel at the 

same velocity. Therefore, they will work to synchronize their velocity states. Many group 

objectives and the various algorithms underlying these strategies are discussed further in other 

papers2-3,6-10. 

 

A. System architecture   

 

An example of a networked multiagent system is shown in Figure 3. The agents of this system 

have three main tasks:  information gathering, computation, and actuation. 

 

 
Figure 3:  Networked multiagent system11 

 

The system consists of four devices, quadrotors in this case, which are connected by a 

communication network. The information flow is shown by a network of one-way and two-way 

arrows. The information streams are due to sensing and communication. Agents can sense the 
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environment and other devices using on-board sensors analyzing motion, light, heat, sound, or 

other parameters. In addition, agents can communicate with each other using radio waves or 

some other medium. Through sensing and communication, a particular agent gains local 

information from a subset of the agents in the system; these agents are called its neighbors. 

 

Each agent utilizes coordination algorithms to compute its local information. These algorithms 

are designed to output the appropriate task that the device should enact based on its particular 

knowledge of the system. 

 

Agents then must implement their computation-based decisions. This implementation involves 

transferring the algorithm’s output into a physical realization of the decision. For our example, 

the quadrotor would appropriately turn its motors to move the blades and device as desired. 

 

B. Distributed control   

 

Distributed control is when every device uses its local information and coordination algorithms 

to make an individual decision on how to proceed in order to support the group objective. 

Decentralized control is similar but must have strongly connected routing networks where every 

agent has a communication routing path connecting it to every other agent12. This routing path 

may go through other agents along the way but still provides an effective communication path 

for transmitting information between distant agents. This allows for decentralized control agents 

to utilize more than just local information. Figure 4 shows how distributed and decentralized 

control differ in their information sharing. 

                      
 

Figure 4:  Distributed control and decentralized control, respectively 

 

Distributed control also differs from centralized control. Centralized control involves a single 

leader that instructs each agent on how to proceed, with no information sharing between other 

agents. These differences in communication and decision strategies are clear in Figure 5. 

 

                
Figure 5:  Distributed and centralized communication networks, respectively 

 

There are several benefits to distributed control. It is very scalable and can be quickly translated 

to work on larger systems. Unlike centralized control, it is not limited by a leader’s range or 

strength capabilities when constructing larger networks. In addition, distributed control 

approaches are designed to work for time-varying communication networks. This ability to work 
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on time-varying networks is important because communication often varies over time in 

multiagent systems due to the changing positions of agents in space and with respect to one 

another.  

 

For distributed control, the coordination algorithms must be constructed to achieve group 

objectives using only local information. As such, each agent has a subset of the total information 

of the system and likely knows different information than other agents in the same system but 

must work towards the same group objective. Another challenge lies in the time-changing 

network of the system. This time-varying communication causes agents to have different 

numbers of neighbors and varying information streams at different times. This dynamic system 

requires more rigor from the coordination algorithms. Yet another challenge in distributed 

control is that of resilience. Security threats in multiagent systems often occur in the form of a 

hijacked agent attempting to undermine the group objective. It may do this by sending malicious 

information or acting aberrantly. An image of a hijacked agent in a system is shown in Figure 6. 

 

 
Figure 6:  Malicious agent attacking a system11 

 

In Figure 6, all three non-hijacked agents are receiving information directly from the adversarial 

agent. If the adversary moves or acts abnormally, the top two devices will sense this information 

and use it in their decisions. If it communicates fictitious or malignant data, the other agents will 

receive malicious information. Despite the potential strength of this attack, there are strategies to 

maintain resilience in distributed control13. If the necessary conditions are met, a multiagent 

system can still achieve the group objective with its non-hijacked agents. 

 

Distributed control has many applications. Ren et al. mention the rendezvous of mobile 

autonomous vehicles, stabilization of a formation, maneuvering of a formation, and flocking 

using distributed protocols10. Saldaña et al. discuss a distributed consensus algorithm’s 

application to perimeter surveillance in which robots patrol a boundary14. Yu et al. examine high-

order consensus algorithms and found conditions that allow for consensus in leader-follower 

control in multiagent dynamical systems15. Wen et al. use distributed control to prove necessary 

and sufficient conditions causing agents to follow leaders in their system utilizing only 

observation of the leaders, not communication16. 

 

The rest of the paper is organized as follows. Section II introduces the mathematical notation and 

the cascaded integrator model. Section III addresses the contributions of this paper in presenting 

an open problem. Section IV concludes. 
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II. Introduction to cascaded integrators 

 

A. Network model 

 

The communication networks of multiagent systems are often modeled using digraphs (directed 

graphs) or undirected graphs. Digraphs consist of a set 𝒩 of nodes to represent the agents and a 

set ℰ of edges to represent the communication flow between nodes. This set of edges consists of 

ordered pairs (𝑣1, 𝑣2) where 𝑣2 ∈ 𝒩 is receiving information from 𝑣1 ∈ 𝒩. Undirected graphs 

only consist of two-way information streams and can be described by using unordered pairs. The 

neighbor set 𝒩𝑖 of a node 𝑣𝑖 consists of its neighbors; i.e., 𝒩𝑖 = {𝑣𝑗 ∈ 𝒩: (𝑣𝑗 , 𝑣𝑖) ∈ ℰ}. The 

number of neighbors, |𝒩𝑖|, is called the in-degree of 𝑣𝑖. A path is a sequence of nodes in a 

digraph such that there is an edge between each pair of nodes in the sequence. A digraph is 

strongly connected if a path exists between every distinct pair of nodes. An undirected graph is 

connected if there is a path between every distinct pair of nodes. A complete graph has every 

node receiving information from every other node. 

 

B. Cascaded integrator model 

 

The cascaded integrator model involves a sequence of derivatives of a variable of an agent. 

These information states are given in (1) for the ℓth-order of a system using Newton’s notation 

for differentiation.  

    

𝜉̇𝑖
(0)

= 𝜉𝑖
(1)

 

⋮ 

𝜉̇𝑖
(ℓ−2)

= 𝜉𝑖
(ℓ−1)

 

                                                                          𝜉̇𝑖
(ℓ−1)

= 𝑢𝑖     𝑖 ∈ {1, … , 𝑛}                                                (1) 

     

This system of differential equations is the set of system equations governing each of the 𝑛 

agents of the system, with associated control action 𝑢𝑖 where 𝑖=1, 2, …, 𝑛. The consensus 

algorithm of such a system desires to have 𝜉𝑖
(𝑘)

=  𝜉𝑗
(𝑘)

 for 𝑘=0, 1, …, ℓ-1 for every distinct pair 

of agents 𝑖 and 𝑗. In other words, each agent’s state derivatives are desired to match all other 

agents’ associated state derivatives. 

 

C. Ren et al. consensus algorithm 

 

Ren et al. propose an algorithm utilizing this model in which all ℓ derivatives are desired to 

match and are utilized in the formation of the control law 𝑢𝑖 as shown in (2)1. 

 

                                          𝑢𝑖 = − ∑ 𝑔𝑖𝑗𝑘𝑖𝑗 [∑ 𝛾𝑘(𝜉𝑖
(𝑘)

− 𝜉𝑗
(𝑘)

)

ℓ−1

𝑘=0

]

𝑛

𝑗=1

    𝑖 ∈ {1, … , 𝑛}                             (2) 

 

The system is designed to find the difference in the derivative states 𝑘=0, 1, …, ℓ-1 for every 

distinct pair of agents 𝑖 and 𝑗. The factor 𝑔𝑖𝑗 indicates whether there is an edge between agent 𝑗 
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and 𝑖. Factor 𝑘𝑖𝑗 > 0 is a design parameter, and the 𝛾𝑘 are control gains that must be carefully 

selected based on the communication structure1. Depending on these differences and the values 

of the three factors, the control law acts in the direction that would limit these differences in 

order to reach consensus.  

 

D. Potential applications 

 

The planar vertical takeoff and landing (PVTOL) system has the potential for achieving 

consensus using the Ren et al. consensus algorithm. This system has a strong coupling of its 

translational and rotational components which makes this possible17. A swarm of fixed-wing 

aircraft could have synchronized takeoffs and landings by controlling their pitch angles, pitch 

angle rates, horizontal positions, and vertical positions using (2).  

 

The damped inverted pendulum cart may also be controlled with a variant of (2). This system 

consists of a pendulum connected to a cart on wheels where the pendulum’s bob is above the cart 

(i.e. the pendulum is inverted). This problem is notoriously difficult to control. However, 

Aguilar-Ibáñez et al. express the system with a chain of integrators that has the basic design of 

(1) with a few variations18. The inverted pendulum is similar to Segways; therefore, control of 

the damped inverted pendulum cart could translate to control of a Segway. 

 

III. Resilient consensus of higher-order cascaded integrators 

 

An open problem in the field of multiagent control is ensuring resilience in the consensus 

process of a network of high-order cascaded integrator agents. Many multiagent systems are in 

danger of attacks and can become dangerous if controlled by an attacker. Several control 

strategies work to allow non-hijacked agents to accomplish the task despite the presence of 

malicious agents13. Necessary and sufficient conditions for resilience are developed for many 

control algorithms to address these types of attacks. Adding resilience to the higher-order 

cascaded integrator consensus algorithm would increase the number of potential applications. 

Specifically, it would make the algorithm feasible for applications that would be dangerous and 

impractical without resilience.   

 

A. Preliminary results 

 

In order to demonstrate that the high-order cascaded integrator consensus algorithm of (2) is 

sensitive to a malicious agent hijacking the network, we first simulate the case where there is no 

malicious agent. This demonstrates the nominal behavior of the networked system. Then, a 

single malicious agent is introduced, and it is shown that the network behavior is hijacked by the 

malicious agent. After demonstrating the need for resilience, we introduce a strategy for 

resilience. We show that the strategy for resilience does not disrupt the consensus behavior when 

no malicious agent is present. Finally, we show that the resilient strategy can maintain the 

desired consensus behavior of the non-hijacked agents when one malicious agent is present.   

 

For each of the simulations, the conditions of Ren et al.1 are matched closely be setting the gains 

𝛾0, 𝛾1, and 𝛾2 to 1, 2, and 3, respectively, as shown in Figures 7-10. The communication network 

consists of a complete graph of four agents. Plots of 𝜉𝑖
(2) for 𝑖=1, …, 4 are shown in Figures 7-
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10 with initial conditions set to 2, 10, 0, and -5, respectively. The initial conditions of the zeroth 

and first derivatives for all agents are set to zero. Figure 7 shows the nominal behavior of the 

network of high-order cascaded integrator agents using (2) when no malicious agent is present. 

Observe that each agent’s second derivative converges to consensus at a fixed constant value.  

 

 
Figure 7:  High-order cascaded integrators using (2) with no malicious agent  

 

Figure 8 shows that a network of high-order cascaded integrator agents using (2) is susceptible to 

just one malicious agent being present. In this case, the control input of the malicious agent is set 

to 𝑢1 = 1, causing its second derivative to increase linearly on a divergent path. The malicious 

agent hijacks the entire network of agents to follow its divergent trajectory. 

 

 
Figure 8:  High-order cascaded integrators using (2) with a single malicious agent  

 

In contrast, Figure 9 shows a simulation of the same network with no adversarial agents, but with 

a strategy for resilience. It employs an approach to resilience that eliminates extreme values 

relative to the individual’s states, making use of a parameter 𝐹 ∈ {1, 2, … }, similar to the 

Adversarial Robust Consensus Protocol (ARC-P)12,13. For each derivative term, the node sorts 

the received corresponding derivative terms and removes up to 𝐹 values strictly larger or smaller 

than its own. The remaining values are used to form the differences shown in (2), applying the 

same gains, summations, etc. as (2). In Figure 9, the parameter 𝐹 is set to 1. Observe that the 
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agents achieve consensus to a fixed constant value, similar to Figure 7. Notice, there is a tradeoff 

between resilience and speed of convergence, as has been shown for single integrator agents12. 

The agents require more time to reach consensus to a fixed constant value. 

 

 
Figure 9:  High-order cascaded integrators with resilience and no malicious agent 

 

Figure 10 shows the simulation under the same initial conditions as shown in Figure 9. However, 

this system has a malicious agent, whose control input is set to 𝑢1 = −1. Due to the resilience 

strategy, the second derivatives of the non-hijacked agents settle and do not diverge with the 

malicious agent like the result shown in Figure 8. The malicious agent does initially influence the 

other agents causing consensus to be reached at a lower value than Figure 9. In contrast to the 

case of single integrator agents13, the final consensus value may lie outside the range of initial 

condition values of the normal agents. 

 

 

   
Figure 10:  High-order cascaded integrators with resilience and a single malicious agent 
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IV. Conclusion 

 

Multiagent control uses groups to perform tasks effectively. Distributed control is a subset of 

multiagent control which only uses the local information received by an agent. This distributed 

control has many benefits and its various algorithms have been used in many applications. Ren et 

al. propose a distributed consensus algorithm for high-order cascaded integrator agents to control 

the high-order derivatives of the agents in the system1. This algorithm has potential applications 

in controlling swarms of fixed-wing aircraft and Segways.  

 

We have demonstrated through simulation that a malicious agent is able to disrupt the consensus 

employed by Ren et al’s algorithm. A resilience strategy has been added to the networked system 

successfully. The employment of this resilience algorithm is also able to achieve consensus 

despite a malicious agent. These simulations have been limited to the case of a complete 

communication graph. The derivation of necessary and sufficient conditions on the 

communication graph to achieve resilient consensus of high-order cascaded integrator agents is 

still an open problem. This addition of resilience enables the protocol to be more effective and 

serve more applications. 
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