
Proceedings of the 2018 ASEE North Central Section Conference Copyright © 2018, American Society for 

Engineering Education 

 

Design Characteristics Optimization of Flexible-Automated Manufacturing System 

Hayder Zghair
 a, b, c 

 

Automated Manufacturing Systems Engineering Department
a 

University of Baghdad 

Aljadria St. 

Baghdad, IQ 00964 

 

Department of Industrial and Manufacturing Engineering
b 

Kettering University 

Flint, Michigan 48504 

Email: hzghair@kettering.edu 

 

Salem Elakrash 

A. Leon Linton Department of Mechanical Engineering
c 

Lawrence Tech University 

Southfield, Michigan 48075 

Email: slakrash@ltu.edu 

 

Ahad Ali 

A. Leon Linton Department of Mechanical Engineering
c 

Lawrence Tech University 

Southfield, Michigan 48075 

Email: aali@ltu.edu 

 

ABSTRACT 

 Decision of how to change design characteristics of flexible-automated system in terms 

of production processes effective time is a sensitive decision for a manufacturer.  The sensitivity 

is related to the system running stability and the decision needs to be as how best to expand will 

have a lasting impression, with the potential for huge gain or loss of the produced units. A real-

world manufacturer in the automotive industry is capable to manufacturer of three products: P1, 

P2, and P3.  The first two currently is produced on a BIW system working at maximum capacity. 

The company needs to expand its production and is looking for the best alternative that will 

support its growing needs and serve it well in the future. This research provides a decision 

making model for whether the design is best to increase the capacity of the current BIW line or 

build a second line to have dedicated production of P1 and P2. A discrete-base modeling 

approach has been used to create an optimizable model for the system to empirically apply the 

solutions. Rockwell ARENA 14.7 software and MINITAB 16 software are used to simulate the 

model, experiment, and gather results the two scenarios investigating capacity requirements for 

the most cost effective expansion. 
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2. INTRODUCTION 

 This applied research aims to determine the total throughput and capacity breakeven 

point at which an expansion of the system’s current combined P1 and P2 compares to the 

alternative of adding a second line so that each line can make a dedicated product.  Under the 

current manufacturing process, which is not altered in this research, P1 is an input part for the 

creation of P2 which serves as an input for the final product P3. Decision making is trying to 

determine the most cost-effective scenario for expansion to ultimately produce more P3. 

ARENA is used to simulate the two models of manufacturing circumstances to determine 

capacity requirements for the most cost-effective one of expansion. The processing steps for the 

manufacturing of the products are not to be examined; the process remains in its current 

arrangement.  Only the capacity of the current line and the new design of two lines are to be 

investigated. Firstly, the current manufacturing line is modeled to be as a baseline for 

comparison.  This model is validated to meet the current output specification of the existing line. 

In the first set of model iteration, the current manufacturing line has been expanded to meet the 

desired process output increase of P1 and P2; which is considered the first alternative.  The most 

time consuming process steps are examined first to determine if localized process expansion can 

sufficiently increase product output; if not sufficient further element expansions are to be made 

until the output increase meets requirements. The second set of iterations is to model a second 

parallel line for the production of P2.  The existing manufacturing line will remain in place and 

only produce P1; which is the second alternative. Under this layout, one of the processes the 

cleaning process can be eliminated from each line for the technical reason of a full system flush 

and clean is not required as each line now has a single dedicated product. Simulation is the 

technique of developing a model of a real system which can be utilized to examine the behavior 

of the system under certain conditions [3]. Particularly, simulation provides important 

advantages to investigate the behavior of a system which do not yet exist to transfer the findings 

into reality, as well as the performance of a real or existing system without directly intervening 

current operations [2, 7]. Discrete event simulation (DES) is one of the most commonly used 

tools especially in the area of production planning and control. DES is appropriate for modeling 

and analyzing material flows, resource utilization, and logistic processes of manufacturing 

systems [1]. In manufacturing, DES is a significant tool that can be used to analyze the efficiency 

via the consideration of what-if scenarios, conclusions can be drawn on how to optimize a 

system’s performance before its construction or use [4]. The factory layout including its entire 

elements, such as machines, transport units, and warehouses, either as single entities or 

combined into production lines can be mapped by DES [8]. Medical product developers, 

government agencies, education and research institutions, as well as health institutions have 

recognized the substantial potential of computational modeling and simulation (M&S) to support 

clinical research and decision making in healthcare, e.g., [6]. Thus, research activities in 

computational medicine are growing at a significant rate and remarkable discoveries are being 

made [5]. 

The objective of this research is to highlight what increases in line capacity are needed and 

where the increased capacity needs to go in a single, dual product line design. Inversely the 

models will highlight the required capacity of a second dedicated manufacturing line for one of 

the products. The results can then be used by the decision making to determine the most cost-

effective expansions for the plant. Section 2 is devoted to the related research works reviewing; 

section 3 is to analyze the collected data and description the variables of the model; section 4 
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describes the phases of the model creating and the major assumptions; section 5 has been 

devoted for the experimenting the alternatives preparing to the analysis; and section 6 is to 

analyze the research results and investigating the optimal solutions. 

3. LITERATURE REVIEW 

 Loo, L. et al. [9] provide a framework for simulation models that use innovation in the 

systems modeling. The research paper focuses on how innovations in simulation models of 

complex systems need a framework. Because the industry presents unique challenges as well as 

opportunities in modeling complex systems in innovative ways, therefore the simulation has 

many effects on the overall model and can be a useful tool. The results show that the innovative 

framework used proves the system modeling technique. Sadoun, B. [10] provides an in-depth 

look into the processes behind applying system simulations. He also applies the analytical 

knowledge outlined as methodology to an applied case study. An extensive tutorial on how to 

conduct an experiment using simulation was written by Barton, R. [11]. Grimard, C. et al. [12] 

redesigned an existing cell in a plant, and used simulation to validate the cell. They also 

discussed why the designed throughput could not be achieved, with the help of their simulation. 

Similar methods were applied to a construction problem. Another research used modeling and a 

design of experiments to address the issue of insufficient resource levels. There paper directly 

looks at an example in pouring concrete Zahraee, S. et al. [13]. Another set of authors researched 

the optimal input order for a job shop system that had flexible inputs. The goal was to optimize 

the production schedule and improve the slack in the system. Their system provides the optimal 

given a set of values for certain variables Cheng, H. and Chan, D. [14]. Optimization through 

simulation has also been applied to the supply chain field. Chu, Y. and You, F. [15] developed a 

simulation to help optimize the network for supply distribution. 

4. INPUT DATA ANALYSIS  

 The data was collected from real-world system of P1, P2, and P3. The system supplies 

these products to one of the top research-based automotive companies in the United States.  The 

automotive company uses the final product produced by the system, P3 to produce the products 

which are distributed and sold around the world. The system manufacturing processes are 

computer controlled and constantly monitored by the system. The data for this study was 

automatically collected by the computer control software.  The records from the past year were 

pulled from the computer archive for the time of each process, the amount of materials added to 

each batch, the reaction/ processing time for each step in the manufacturing process, and annual 

throughput. The data used in this study is based on one year of continuous process run time. The 

system is continuous running 24 hours a day 7 days a week.  For this reason all full line 

simulation will be run for one continuous year or 8700 hours. For every 720 hours (roughly one 

month) there are 8 hours of downtime for preventative maintenance, this will be accounted for in 

all simulations using a failure process to imitate the down time at which time the line will pause. 

To mirror the actual manufacturing process as closely as possible the start time from 

manufacture of P1 and P2 are set off by the completion of the other.  Therefore, P2 only begins 

to be manufactured once an entire P1 process has run from beginning to end.  The final 

assumption is that the data provided by the system does mirror the actual manufacturing process.  
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As a result of employer confidentiality, the raw production data could not be shared, only a data 

summary was shared. The data provided was said to have been run through a process similar to 

ARENA’s Input Analyzer function to create the process time distributions provided for this 

study. As mentioned the provided data is a summary of one year of continuous production of P1 

and P2.  Additionally, only a summary of the process times were shared as a result of 

confidentiality agreements, see Error! Reference source not found. for all reaction and process 

time data.  All times are given in hours.  The throughput of the plant was 160 batches each of P1 

and P2 for the given time period.   

 

Table 1: Process Time Distributions (hrs) 

P1 P2 

Process Description Process Description 

Mixing TRIA(10,12,14) Mixing TRIA(11,13,15) 

Heating TRIA(1,3,5) Heating TRIA(4,6,8) 

Cooling TRIA(1,2,3) Cooling TRIA(2,4,6) 

Drying TRIA(1,3,5) Drying TRIA(4,6,8) 

Packaging EXPO(1) Packaging EXPO(1) 

Cleaning EXPO(2) Cleaning EXPO(2) 

5. SIMULATION MODEL BUILDING-UP 

 After analyzing the time study data, a discrete event simulation model was developed that 

will run for 8700 hours.  The model begins with a create module that produces one single arrival 

at the beginning of the simulation.  The created entity then goes through an assign module that 

allocates the attribute type of the entity as TYPE 1 which corresponds to P1. This attribute 

assignment is used to assign the processing time data required for HPA as it moves through the 6 

processing stations.  The processing times are defined under expression in ARENA in a 2 x 6 

matrix, see Figure 1, where attribute TYPE 1 represents the first row and each column represents 

one of the manufacturing processes.  The second row is designated for TYPE 2 which is P2 and 

will be assigned later. After the first batch completely runs through the 6 processes it runs 

through an assign variable which uses a boolean string “(TYPE==1)*2 + (TYPE==2)*1.”  This 

string changes the attribute type from 1 to 2 or 2 to 1 depending on the incoming batch.  The 

reason for this is the creation of P2 relies on the production of P1.  Therefore, the model is setup 

to run in a loop, alternating which product is produced each time. After the assign module the 

product then runs through a separate module.  The original out of the separate is counted and 

statistics are recordered.  The other output runs through a decide module and through a set of 

assign processes to change the attribute picture. After the reassignment is completely done the 

entity goes straight to the first processing station, mixing.  This process continues, switching 

between P1 (TYPE 1) and P2 (TYPE 2) for the full production time.  The only time that the line 

stops is for 8 hours of preventative maintenance every 720 hours of operation in which case the 

entire system pauses. The single dual-product line is shown in Figure 2. 
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Figure 1: Time Matrix in ARENA Expression Values 

 

 

 
 

Figure 2: Original ARENA Simulation, Single Dual-Product Line 

 

6. EXPERIMENTION SETTING-UP 

 Using design of experiment principles a regression model was built for the data set.  The 

same six processes are followed by each of the two products, the only variation being the time 

that each requires.  A 2
k
 factorial design of experimentation was created for the 6 processes.  

Given a full 26 design there would have been 64 runs required to meet the full replication set.  

To reduce simulation time, a ¼ factorial design was used.  This reduced the number of required 

simulations down to 16 runs.  For each process and product a high and low level production time 

was developed by taking the minimum and maximum process time from the triangular 

distributions provided by the system to determine the impact of that processing factor on the 

manufacturing process.  See Table 2 below for the high and low levels for each.  Figure 3, the 

design matrices followed by the ¼ factorial designs for all processes and the total throughput that 

each run yielded. 
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Table 2: Processing Time Levels for Each Product 

Level Low (-1) High (+1) Low (-1) High (+1) 

Process P1 P2 

Mixing EXPO (10) EXPO (14) EXPO (11) EXPO (15) 

Heating EXPO (1) EXPO (5) EXPO (4) EXPO (8) 

Cooling EXPO (1) EXPO (3) EXPO (2) EXPO (6) 

Drying EXPO (1) EXPO (5) EXPO (4) EXPO (8) 

Packaging EXPO (1) EXPO (1) EXPO (1) EXPO (1) 

Cleaning EXPO (2) EXPO (2) EXPO (2) EXPO (2) 

 

 

 
 

Figure 3: ¼ Factorial Designs 

 

 

 
 

Figure 4: Analysis of Variance and Regression Equation 
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 It is critical to validate the assumptions of the model. For this a residual analysis will be 

performed, see Figure 5 for the residual analysis plots. The first assumption is that the 

probability distribution of the error is normally distributed with a mean of zero.  By looking at 

the normality plot it is evident that this assumption is confirmed. There are no data points that 

stray significantly from the normal line. The second assumption is of constant variance in the 

model. This is shown by the versus fit plot. As one can see there is a parabolic pattern in the 

variance. This would tend to say that there is not constant variation in the model which would be 

shown if there was no pattern at all to the data fit. The final assumption that needs to be checked 

is that the error is independent between all variables. This is done using the observation order to 

ensure that the tests are consistent by seeing if there is a pattern or not in the data.  As one can 

see the discrepancies are in the 1st and 16th observations. These two observations were the 

culmination of entirely high and low factors in the factorial model which is why they appear to 

be so far out of place.  However, the stability and repeatability of the model is valid. The 

ARENA platform is able to recreate any of the simulation over and over without change. The 

error that a physical process would introduce into a model such as this one can be ignored in this 

case. Independence can be assumed for this model.  Upon analysis of this regression model 

everything seems to be in order with the exception of the constant variance.  While this does not 

definitively invalidate the model it is a point of concern. 

 

 

Figure 5: Residual Plots 

 

With this being said, the resulting regression equation is not extremely helpful to the analysis as 

throughput will always be maximized when the time of each process is minimized.  What this 

analysis does highlight is the impact of the dependent variables on processing time on the 

throughput of the system (independent variable). This is reiterated by Figure 6 of the Pareto 

Chart of Standardized Effects showing D (drying) having the greatest impact on throughput. 
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Figure 3: Pareto Chart of Standardized Effects 

7. RESULTS ANALYSIS 

 The utilization of each piece of equipment in the manufacturing process is very low as 

shown in Table 3. The reasoning for this is that each piece of equipment is sitting idle either 

waiting to process or after it has finished performing its process on the current batch. By far the 

largest utilized piece of equipment is the mixing machine at 45.78%. This will be the target of 

the improvement analysis as it clearly is the bottleneck of the system because of its 

comparatively ling processing time. If the processing time can be reduced for this machine the 

total throughput can be increased. 

 

Table 3: Resources Utilization 

Resources Utilization % 

Mixing 45.78 

Heating 16.21 

Cooling 10.89 

Drying 16.51 

Packaging 3.55 

Cleaning 0.64 

 

 Given the current process for the manufacturing of P1 and P2 queuing is not an issue.  As 

a result of the batch process that the system runs on, the product never has to wait to proceed to 

the next station because the machine is sitting idle.  There is then a full system delay for cleaning 

as which point the raw materials for the next product are being prepared for processing.  

Similarly, there is never more than 1 batch that is in process at any one time and that batch is 

only ever being processes on a single machine.  Additionally, because the process is continuous 
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for an entire year WIP is not an issue with this production process. Throughput is the primary 

element of this analysis.  The system requires 240 batches per year of both P1 and P2 but is 

currently only at 160 batches of each.  Due to the nature of the chemical processes that must take 

place to result in the drugs being produced correctly, capacity is the variable that must be 

adjusted.  In terms of the simulation model this will be done by changing the processing time but 

will be reported to management as a capacity increase requirement. Currently the line is out of 

balance in terms of a balanced processing time on each piece of equipment.  The primary 

difference in this case and why this is not a direct issue is a result of the batch nature of 

production.  All machines but one is sitting idle at any given time as they wait for the machine 

before them to finish processing.  While the time of each piece of equipment contributes to total 

process time, it is never holding up the rest of the process as one would consider in a traditional 

case thus requiring line balancing. Comparing the simulation data from the model to the data that 

was collected by the system, the annual throughput is very close. The system produces 320 total 

units of P1 and P2 per year (160 each). The model produces 316 total units per year (158 each). 

Thus the model captures 98.75% of actual throughput. From that information, it was considered 

that, that is not a significant difference between the simulation and actual plant production.  

 For the first alternative, the objective is to increase the capacity of the current line while 

retaining the single production line; dual product layout. To achieve the target combined output 

of 480, an iterative method was used that adjusted the original processing times supplied by the 

system with a multiplier for each process. The multiplier represents the required change in 

capacity that the processing time must experience to get the correct final line output. Table 4 

below shows multiple potential time capacity changes with the corresponding output. Based on 

production time the mixing process was the throughput bottleneck of the system.  Therefore, the 

first objective was to look at that station alone to try and meet the throughput targets.  Iteration A 

from Table 4 shows the multiplier required.  The challenge with iteration A, and all of the 

iterations for that matter, is that not only does the process with the multiplier need to be changed 

but every other process does as well.  The reason for this is if the capacity for mixing is increased 

all other processes need to be adjusted accordingly to handle the increased throughput.  Further 

iterations and options were conducted to give management a better idea of what can be done to 

meet the throughput targets.  It will be their decision to determine the most cost effective 

increases to meet the target numbers as none of that data was supplied to this study. 

 

Table 4: Single Line, Dual Product Improvement Iterations 

Iteration A B C D 

Throughput 479 482 478 480 

Mixing 0.26 0.68 0.55 0.62 

Heating 1 0.55 0.7 0.62 

Cooling 1 0.55 0.7 0.62 

Drying 1 0.55 0.7 0..62 

Packaging 1 1 1 1 

Cleaning 1 1 1 1 
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 The second alternative was to create two parallel production lines that each produce their 

own product of either P1 or P2.  Figure 4 shows the ARENA model of the new process.  The 

overall manufacturing process is the same as the original model with the exception of the 

cleaning process which has been removed.  As a result of the products not switching lines the 

system does not need a full purge to run the second product.   

 

 

Figure 4: Two Single-Product Lines Process 

 The initial run for this model was made with the original production capacity of the 

original line. This would be a scenario where an exact replicate of the existing lines was put in 

place. With this capacity (multiplier of 1) the throughput far surpasses the system’s 

requirements. In this simulation P1 yields 412 and P2 yields 291 for a total of 703, far exceeding 

the required value. A similar iterative process was used that adjusted the original processing 

times to mimic changed capacity to simulate the throughput. The multipliers and throughput 

results are shown in Table 5. As one can see as a result of the differing production times for each 

of the drugs the capacity for each line needs to be different. This would require not only a new 

production line but also a complete overhaul of the existing line in order to not far out exceed the 

production requirements.  In a new two line setup the production time would need to be nearly 

cut in half for P2 and by nearly two and a half times for P1. There was no further iteration run for 

this analysis as the capacity change requirements seemed to be over reaching.  
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Table 5: Dual Line Single Product Iterations 

Iteration Original New 

Product P1 P2 P1 P3 

Throughput 412 291 162 163 

Mixing 1 1 2.65 1.8 

Heating 1 1 2.65 1.8 

Cooling 1 1 2.65 1.8 

Drying 1 1 2.65 1.8 

Packaging 1 1 1 1 

 

8. CONCLUSIONS AND RECOMMENDATIONS 

 Through the efforts of creating a virtual manufacturing simulation model of the system’s 

process for the creation of P1 and P2 several lessons were learned.  The first was that a valid 

simulation model could be constructed from the given data that mirrors the output observed by 

the existing the system process.  The second was by changing the capacity alone but not the steps 

in the manufacturing process the desired increased output could be achieved. After a thorough 

and complete analysis of the original model with increased capacity and the split two production 

line model, several capacity variants were developed that achieve the desired output.  These 

capacities can be seen in Table 4 and Table 5for the single line and dual line respectively.  These 

values can now be used by management to determine the optimal cost process that will allow 

them increase their capacity.  It is the opinion of the authors that the single, dual product 

production process should be maintained.  To achieve the 50% increase in output desired by the 

system a two line system far exceeds the need.  Secondly, in the dual line approach not only is a 

second production line required but also a complete capacity decrease to the existing line.  On 

the other hand with the single line only a capacity increase is required to achieve the desired 

system throughput increase. 
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