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Introduction 
 
Motivated by increased demand for computational skills in science and industry, universities 
have started offering programs in data science but are faced with the challenge of developing 
courses in hard-to-define areas such as “computational modeling” and “data analytics.” Loosely 
defined, data science is the science of collecting and analyzing data and is closely related to 
computational science, which is broadly interested in applications of computing. Sometimes data 
science is cast as an enhanced version of statistics or computer science; but the predominate 
academic view envisions computational and data sciences as a unified, yet multidisciplinary 
field. Practices such as data analysis, mathematical modeling and programming are common in 
mathematics, statistics and computer science; but computational science adds applications to 
these practices to foster a particular worldview about modern uses of computing. 
 
Defining “data science” and “computational thinking” provides a framework for talking about 
computational science in the context of science and mathematics education. New academic 
programs at the collegiate level represent different approaches to infuse computational science 
into the curricular landscape. The high cost of creating new programs leads many universities to 
create programs using resources from existing departments, often computer science and 
statistics, while other universities have invested in entirety new departments and coursework.  A 
lack of research about computational science education makes it difficult to establish curriculum 
or choose teaching methods, although progress has been made defining terms, developing broad 
standards, and adopting practices used in industry. Recent perspectives on computational science 
education from various fields are surveyed here to summarize the state of the field, compare 
definitions of terms and provide examples of relevant academic programs for those developing 
curriculum and coursework.   
 
Evidence-based teaching practices in STEM provide a starting point for new collegiate programs 
in computational science interested in promoting effective teaching. In particular, the literature 
strongly supports using active learning, problem-based learning and peer instruction to improve 
student engagement. However, these methods may be difficult to transfer directly from computer 
science and mathematics because of cultural and pedagogical differences, necessitating new 
research on computational science education.  
 

 
Defining Data Science  
 
“Computational science”, “computational modeling”, “computational thinking” and “data 
science” refer to an emergent scientific paradigm focused on using computers to solve science 
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and business problems. The phrase “data science” has been given the most attention in news 
articles and job reports, including this description of a data scientist in the Harvard Business 
Review:  “At ease in the digital realm, they are able to bring structure to large quantities of 
formless data and make analysis possible” [1, Para. 9]. Although this description avoids technical 
language it may be misleading by not discussing specific practices of data scientists. Cao, in an 
extensive review of the state of the field, assesses: “while data science as a term has been 
increasingly used in the titles of publications, it seems that a great many authors have done this 
to make the work look ‘sexier’. The abuse, misuse and over-use of the term ‘data science’ is 
ubiquitous, and essentially contribute to the buzz and hype” [2, p. 7]. Hence, a discussion of data 
science should be brought closer to its actual practitioners such as industry leaders and 
academics.   
 
Some academics define “data science” with a focus on data itself, while others emphasize 
methods and disciplinary content. The National Science Foundation writes that data science is 
the “science of planning for, acquisition, management, analysis of, and inference from data” [3]. 
De Veaux et al. [4] adopt this definition as a basis for suggestions for undergraduate coursework 
in data science and append details about each data process. On the other hand, data science for 
business (“data analytics”) focuses on statistical methods for prediction [5]. In the context of 
supply chain management, Walker and Fawcett assert that “data science is the application of 
quantitative and qualitative methods to solve relevant problems and predict outcomes. One of the 
salient revelations of today, with the vast and growing amount of data, is that domain knowledge 
and analysis cannot be separated” [6, p. 78]. Highlighting the actual activities of data scientists, 
West cites this definition and adds that “data science methods usually touch on statistics, 
computer programming (coding) and strategies for understanding and explaining phenomena in 
various domains of interest” [7, p. 140]. A key distinction between data-focused definitions and 
Walker and Fawcett’s definition is the weight given to methods, rather than content. Blogger 
Conway writes that “the difficulty in defining these skills is that the split between substance and 
methodology is ambiguous, and as such it is unclear how to distinguish among hackers, 
statisticians, subject matter experts, their overlaps and where data science fits” [8, Para. 2]. 
Conway proposes that data science lie at the intersection of “hacking skills”, mathematics and 
statistics and knowledge of a subject area (see Figure 1), a model that has been used by the 
Society for Industrial and Applied Mathematics [9]. Therefore, alongside simply using data, data 
science is related to several existing academic disciplines, including mathematics, statistics, and 
computer science; but there are disagreements about exactly how these subject areas interact. 
 
  



Proceedings of the 2019 ASEE North Central Section Conference 
Copyright © 2019, American Society for Engineering Education 

3 

(a) (b) (c) 

(d) (e) (f) 

 
 
 
 

   
 
 
 
Figure 1. Venn Diagram-type views of computational science. Computational science and data 
science are often understood as including elements from mathematics, computer science, 
statistics and domain science. 

a) The logo for “Recommendations for Computational Physics in the Undergraduate 
Physics Curriculum” from the American Association of Physics Teachers [10]. 

b) The “Data Science Venn Diagram” developed by Conway [8] and referenced by SIAM 
[9]. The “danger zone” is a lack of mathematics knowledge. 

c) The logo for Michigan State University’s department of Computational Mathematics, 
Science and Engineering (CMSE) representing the intersection of mathematics, scientific 
computing and applications [11]. 

d) A vision of data science from a talk by Bin Yu, from the Institute of Mathematical 
Statistics [12]. 

e) Figure from Denning and Freeman [13] arguing that computing is distinctly different 
from mathematics, science and engineering. 

f) Elements of Computational Science and Engineering Education (CSE) evolving from an 
intersection of mathematics, computer science and applications to having “common 
concerns with these disciplines, as well as having content of its own” [14, p. 788]. 
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Determining the substance of data science and its relationship to other fields is a crucial step for 
designing degree programs and job descriptions.  In academia, this discussion is about the ways 
in which a program is “interdisciplinary” [5], [15]. De Veaux et al. argue that Data Science is a 
“blend” of statistics, computer science and mathematics; “but it is neither the simple intersection, 
nor the superset of the three” and that “at the undergraduate level, we conceive of Data Science 
as an applied field akin to engineering” [4, pp. 3–4]. Similarly, West compares data science to 
other interdisciplinary fields such as medicine, informatics business and engineering, arguing 
that students of data science should be trained in different subject areas as well as processes such 
as “problem definition, data analysis, critical thinking, evidence-based problem solving, 
communication and ethics” [7, p. 138]. Cao argues that the thinking practices by processes such 
as data-driven discovery, intelligence-driven exploration, data analytical thinking and 
hypothesis-free exploration set data science apart from other fields  [2, p. 334]. Sometimes data 
science is defined more narrowly as an enhanced version of statistics; but this perspective lacks 
high-level aspects of computation and future scientific goals. Donoho writes that 
 

the now-contemplated field of data science amounts to a superset of the fields of statistics 
and machine learning, which adds some technology for ‘scaling up’ to ‘big data.’ This 
chosen superset is motivated by commercial rather than intellectual developments. 
Choosing in this way is likely to miss out on the really important intellectual event of the 
next 50 years [16, p. 745].  

 
In summary, the emergent field of data science has new ways of thinking about creating, 
organizing and analysis data that transcend the union or intersection of different fields.  

 
Computational Thinking Practices 
 
The terms “computational thinking” and “computational science” usually focus on how people 
think about applications of computing. In the last decade there has been a strong push to 
incorporate computational thinking in K12 education [17]–[22]. This thrust has been motivated 
by educational standards such as “using mathematics and computational thinking” in the Next 
Generation Science Standards and using “technological tools to explore and deepen their 
understanding of concepts” in the Common Core [17]. In a highly influential article, Wing [19] 
highlights the importance of computational thinking in society by providing a litany of 
computational thinking practices [18], [23]. Computational thinking, Wing argues, is a 
fundamental twentieth century skill and “to reading, writing, and arithmetic, we should add 
computational thinking to every child’s analytical ability” [19, p. 33]. According to Barr & 
Stephenson [24], collaboration between K12 educators and college faculty is necessary to 
achieve this goal.  
 
Like “data science”, “computational thinking” is difficult to define and there is a “lack of 
agreement on whether [computational thinking] should ultimately be incorporated into education 
as a general subject, a discipline-specific topic, or a multidisciplinary topic” [18, p. 40]. Barr & 
Stephenson organized educator workgroups to create a table of “Core Computational Thinking 
Concepts and Capabilities” and discuss the complexities of defining computational thinking 
using a “practical approach, grounded in an operational definition” [23, p. 50]. The table contains 
a list of computational thinking practices and examples of how they could be incorporated into 
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Computer Science, Mathematics, Science, Social Studies and Language Arts classes [18, p. 52].   
To further clarify the nature of “computational thinking,” Weintrop et al. analyzed the content of 
high school programs aimed at fostering computational thinking and consulted with experts in 
computational fields to devise a taxonomy of practices in computational science [17]. Their 
computational thinking taxonomy provides a way of organizing practices exercised by scientists 
and educators, which can be used to develop pedagogy and learning goals (see Figure 2). 
Although the study focuses on demystifying computational thinking in the high school science 
curriculum, the framework was designed by consulting with academics and researchers and is 
also useful to discuss computational science in collegiate education.  
 

 
 
Figure 2. The computational thinking taxonomy. Collated practices in computational thinking 
based on K12 educational programs and the work of computational researchers [17]. 
 
While “computational thinking” refers to computing practices, “computational science” focuses 
on using and developing computational tools, which may or may not include data analysis. 
According to Yasar and Landau, computational science in the university denotes both a 
“multidisciplinary combination of computational techniques, tools, and knowledge needed to 
solve modern scientific and engineering problems” and “science or engineering that uses 
computer simulations as its basis, and sometimes it denotes the research and development of 
computational skills and tools needed for applications” [14, pp. 787–788]. Similarly, Grover and 
Pea propose nine practices that should form the basis for computational thinking in K12 
education, but aside from “systematic processing of information”, none of these practices make 
any explicit references to data [18, pp. 39–40]. Hence, this view of computational thinking is 
nearly disjoint from data science practices. Others see a more unified view of computational 
science and data science.  For example, Michigan State University “treats computational and 
data science as the junction of algorithm development and analysis, high-performance 
computing, and applications to a wide range of important problems in science, engineering, and 
other fields” [11, p. 2]. This view is implicitly held by Weintrop et al. who include data science 
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practices in their computational thinking taxonomy, asserting that computational science 
subsumes data science [17]. Adopting this integrated view leads to implications for coursework 
in computational science. 
 
Computational Science Curriculum 
 
New programs in computational science are growing rapidly, with about 150-200 US universities 
offering courses in data science, big data and data analytics [2], [4]. These new programs are 
usually motivated by the fact that mathematics and statistics are essential for understanding 
computational science [5], but existing academic departments do not adequately address 
computational thinking practices or do not sufficiently prepare students for industrial careers. For 
example, computer science courses at Michigan State University are often “heavily 
oversubscribed and typically do not encompass the range of skills that employers desire, such as 
fluency in computational and data science methods” [11, p. 2]. Additionally, while 
computational science includes many aspects of mathematical thinking  [20], the mathematics 
pipeline is too long for students to be involved in relevant research projects. An advisor at 
Rensselaer Polytechnic University writes that “a big problem with our current math sequence is 
that it just takes too long to get where you want to go . . . as a community we should be thinking 
about if we should be doing things in a different order” [9, Para. 10]. Current pathways to 
learning computational science are often slow, and so a challenge in collegiate education is 
deciding how to establish programs dedicated to teaching computational methods.  
 
The similarities between practices in computational science and existing disciplines can be used 
to build new programs in computational and data sciences. One option is to combine courses 
offerings from different departments to approximate the breadth of practices in computational 
science. In 2003 the College of Charleston created an interdisciplinary degree program for 
undergraduate students to major in Data Science [25]. A few of the courses required for this 
degree were created for the program, but most were drawn from the Departments of Computer 
Science and Mathematics and focus on data analysis and statistics. The program successfully 
brought Data Science to a liberal arts environment, boosted enrollment in computer science and 
attracted high-achieving students [25]. While this degree is innovative, jointly-administered 
programs may not be able address all of the computational thinking practices in each course, 
since other departments have long-standing curricular expectations. For instance, the data 
science task force at the University of Delaware has acknowledged that “without an established 
major or minor in data science, structuring a program with multiple units that support students’ 
diverse passions is challenging . . . perhaps the solution is to take such a program out of a 
department and run it as an interdisciplinary project” [9].  In response to the emergence of as 
computational science as a distinct entity, some universities have created entirely new programs 
in computational science and data science. 
 
In 2016, the Park City Math Institute (PMI) devised a set of curriculum guidelines for 
undergraduate programs in data science, with an interdisciplinary focus on computational and 
statistical thinking [4]. The result is a collection of syllabi outlining a data science major (see 
Figure 3).  Recognizing that data science is “inherently interdisciplinary”, but not a “simple 
intersection” (cf. Figure 1), the faculty at PMI advocate that “new courses should be developed 
to take advantage of the efficiencies and synergies that an integrated approach to Data Science 
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would provide” [4, p. 4]. The proposal suggests nine new courses in data science, but the authors 
realize that most universities will simply draw from existing courses (the approach taken by the 
College of Charleston) and hope that this will eventually lead to  “more fully integrated courses” 
[4]. While easier and more cost-effective, this approach might not provide adequate training for 
students interested in data science careers. Cao calls this approach “old wine in new bottles” 
since “the re-combination and shuffling of existing subjects, the logical relationships between 
subjects are often very weakly drawn and do not form a logical, reasonable concept map and 
knowledge base for training a data scientist” [2, pp. 334–335]. On the other hand, Weintrop et al. 
argue that adding computational components to existing classes will address minority 
representation in STEM fields by “directly [addressing] the issue of students self-selecting into 
(or out of) computer science classes, which has been a challenge long plaguing the effort to reach 
underserved youth” [17, p. 129]. They also discuss a “reciprocal relationship” between 
established disciplines and computational science: while computational methods lead to 
scientific advancements, it is also true that “science and mathematics provide a meaningful 
context (and set of problems) within which computational thinking can be applied” [17, p. 129]. 
Hence, introducing computational thinking practices in STEM classrooms has the potential to 
strengthen traditional subject areas and boost representation, but may not be sufficient to 
introduce students to all of the interdisciplinary content of data science. 
 

 
 
Figure 3. Requirements for an undergraduate degree in Data Science. A workshop at The Park 
City Math Institute produced guidelines for undergraduate coursework Data Science [4]. 
 
The Department of Computational Mathematics, Science and Engineering (CMSE) at Michigan 
State University (MSU) is an example of an entirely new academic department created to address 
a need for training in computational and data science practices [11]. Department faculty explain 
that “a wide range of industries now use computational modeling and data analytics to inform 
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many aspects of their day-to-day practices, encompassing a range of activities that include 
product design, optimizing manufacturing, hiring decisions, and choosing advertising targets” 
[11, pp. 1–2]. The first educational initiative by CMSE was developing CMSE 201: 
“Introduction to Computational Modeling.” CMSE 201 aims to make a broad palette of 
computational practices available to as wide an audience as possible using domain content from 
physics, chemistry and biology to teach skills common to both data science and modeling [11, p. 
4]. The only prerequisite is one semester of calculus. The programming skills taught in the class 
are motivated entirely by applications within the course and no prior programming experience is 
expected. “Students certainly learn many of the same computer science topics (i.e., variables and 
arrays, loops, simple data structures, functions, etc.), but they do so in service of building and 
running simulations and analyzing data” [11, p. 4]. Class work is done is completed in groups 
and students use vertical whiteboards to share and discuss ideas, strategies Liljedahl [26] 
identifies with a “thinking classroom” in mathematics education.  
 
The course content and teaching style of CMSE 201 are rooted in scientific computational skills 
rather than traditional syllabi in computer science or mathematics. The designers of CMSE 201 
list six learning goals: 

(1) Gain insight into physical, biological, and social system through the use of computational 
algorithms and tools. 

(2) Write programs to solve common problems in a variety of disciplines. 
(3) Identify salient features of a system that can be codified into a model. 
(4) Manipulate, analyze, and visualize datasets and use these data to evaluate models. 
(5) Understand basic numerical methods (e.g. numerical integration, differential equations, 

Monte Carlo) and be able to use them to solve problems. 
(6) Synthesize results from a scientific computing problem and present it both verbally and 

in writing [11]. 
 

These goals are closely aligned with the computational thinking taxonomy designed by Weintrop 
et al. [17]. “Data Practices” are found in goal 4, “Computational Problem Solving Practices” are 
found in goal 2, “Modeling and Simulation Practices” are found in goals 1, 3 and 5 and “Systems 
Thinking Practices” are found in goals 1 and 3. Hence, CMSE 201 captures the breadth of 
computational practices envisioned by Weintrop et al. along with scientific writing (goal 6). 
Furthermore, each day of class has three components: “modeling/data analysis concept”, 
“context/application”, and “programming practices.” These different activities expose students to 
a mix of mathematics, domain science and technical skills [11], which are important aspects of 
computational and data sciences [4], [12], [14]. Courses similar to CMSE 201 have been 
developed by Asamoah, Doran and Schiller [5] at Wright State University with a focus on 
business analytics and Baumer [27] at Smith College with a focus data science in statistics. 
CMSE 201 is particularly notable for fusing computational and data sciences skills with 
mathematics and science in a way that is accessible to undergraduates and is aligned with 
computational thinking practices.  

 
Teaching Computational Science 
 
One primary difficulty in designing and teaching a computational science course is the lack of 
research about computational science education. While designing CMSE 201, O’Shea et al. 
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identified the following gap in the literature: “while a set of measurable concepts in 
programming has been defined in computer science education research community, a similar 
inventory of concepts and a related assessment tool does not exist with regards to computational 
modeling and data analysis” [11, p. 21]. West (2018) echoes this sentiment, writing that “data 
science degree development would benefit from the objective translation of these activities into 
competencies for the development of a ‘baseline’ data science curricula” [7, p. 141]. While the 
curriculum designed by De Veaux et al. [4] arguably fills this role, West [7] argues for an 
“objective approach” to validate curriculum, such as natural language processing, to remove 
human intuition from the process.  Aside from limited competencies for computational and data 
sciences, there is little empirical research about how to encourage computational thinking [18, p. 
42] and so it is difficult to design courses around evidence-based teaching practices.  
 
On the other hand, the overlap between closely-related areas such as mathematics, computer 
science and engineering suggests several practices for teaching computational science. One 
approach to teaching college science courses that has garnered a lot of attention from faculty is 
“active learning.” There are many realizations of active learning, which Prince (2014) defines as 
“any instructional method that engages students in the learning process . . .  [and] requires 
students to do meaningful learning activities and think about what they are doing. Active 
learning is often contrasted to the traditional lecture where students passively receive information 
from the instructor” [28, p. 1]. By analyzing 225 studies about the effects of active learning in 
collegiate STEM classes, Freeman et al. [30] find that using active learning increases student 
performance on examinations and concept inventories by 0.47 standard deviations on average 
when compared to a lecture format. The results of this meta-study suggest that active learning 
may be well-suited to computational science, which has elements of science, technology, 
engineering and mathematics—the different areas in STEM.  However, the success of active 
learning depends on the implementation. According to Prince, “claiming that faculty who adopt a 
specific method will see similar results in their own classrooms is simply not possible. Even if 
faculty master the new instructional method, they cannot control all other variables that affect 
learning” [29, p. 3]. The similarity of the course goals and content in STEM disciplines suggest 
that successful practices may transfer to computational science, but there is little research 
targeting this question. 
 
A universally accepted definition of active learning does not exist, there are several generally 
accepted practices in which students actively participating in the learning process. For example, 
Caceffo, Gama and Azeved [31] define active learning as “a student-centered paradigm in which 
students should not only passively listen, but also read, write, discuss, be engaged in solving 
problems and also actively think and reflect throughout this process” [31, p. 922]. A similar 
concept to active learning is “collaborative learning” which refers to “any instructional method  
in which students work together in small groups toward a common goal” [29, p. 1]. One type of 
collaborative learning is “cooperative learning”, which is defined as a “structured form of group 
work where students pursue common goals while being assessed individually” [29, p. 1]. As an 
example, the MSU course described earlier (CMSE 201) uses cooperative learning since students 
collaborate in class to solve computational problems and then each student turns in their own 
digital notebook [11]. A related category of active learning methods is problem-based learning 
(PBL) in which “problems are introduced at the beginning of the instruction cycle and used to 
provide the context and motivation for the learning that follows” [29, p. 1]. After examining 
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several studies on active learning, Prince [29] finds evidence to support collaborative, 
cooperative and problem-based learning in STEM. The aspects of learning that are boosted the 
most by these methods are “instruction in problem solving” and “cooperative.” The former of 
these fits with the computational taxonomy’s category of “computational problem solving” [18] 
and so active learning may be well suited to computational science.   
 
Another teaching method meant to encourage active student participation is peer instruction (PI). 
Vickrey, Rosploch, Rahmanian, Pilarz and Stains define PI as “an evidence-based instructional 
practice that consists of asking students conceptual questions during class time and collecting 
their answers via clickers or response card” [32, p. 1]. The purpose of PI is to “engage students 
through activities (conceptual questions) during the class, allowing the instructor to identify any 
misunderstandings or learning issues among the students regarding the core concepts taught” 
[31, p. 923]. Peer instruction involves a cycle of specific steps that allow students to reflect and 
collaborate on questions posed by the teacher. According to Vickrey et al. [32], students in 
STEM classes taught using peer instruction have better conceptual understandings, higher 
confidence in the material and higher self-efficacy, compared to students in a lecture-based class. 
Like active learning, the success of peer instruction in STEM suggests that it would be well-
suited for computational science classrooms; but it depends on the actual implementation. 

 
Active learning has been studied in computer science in various settings [31], [33]–[36]. Nuutila 
et al. [36] apply PBL to an introductory programming class in a computer science department, 
with a more specific formulation than the definition given by Prince [29]. Based on a traditional 
PBL scheme proposed by Schmidt [37] for use in medicine (see Figure 4), students cycle through 
a process of reading a case, brainstorming, establishing goals and discussing solutions. Students 
examine three types of cases: knowledge-orientated cases present a real-world problem meant to 
create cognitive dissonance; design cases present a real-world design problem that is too difficult 
for one student to complete; and analytic cases are meant to identify and confront students’ 
misunderstandings. As compared to a lecture-based course, Nuutila et al. [36] find that their PBL 
implementation lowered dropout rates, improved motivation and provided emotional support for 
students. 
 
In a later study, Caceffo et al. (2018) conducted a small experiment (n < 20) to compare the 
effectiveness of PBL and PI with a traditional lecture format in an introductory computer science 
course. A distinction is made between “active” strategies such as PBL and PI and lecture, “is an 
instructor-centered approach in which students passively listen to and absorb any data presented 
to them.” [31, p. 922]. The approach to PBL was simpler than the one used by Nuutila, Törmä 
and Malmi [36] by using short in-class activity that allowed and intra-group collaboration (see 
Figure 4). The four-step method proceed as follows: divide class into groups and discuss 
problems (15 minutes), group starts to discuss (15 minutes), develop initial solution (20 
minutes), groups exchange solutions and then repeat (30 minutes).  For the PI course, students 
were instructed students to watch video and completed exercises outside of class. In class the 
website Poll Everywhere was used to evaluate students’ understanding.  Comparing the three 
formats (lecture, PI and PBL), students’ self-reported learning gains and motivation levels were 
highest for PBL and preparation time for students was lowest [31]. While this study is small it 
provides promising anecdotal evidence to support using peer-instruction in an introductory 
programming class. Learning to program is a critical skill for computational science, which 
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(a) (b) 

suggests that peer instruction may be an appropriate technique to adopt in computational science 
courses. 
 

 
 
 
Figure 4. Schemes for problem-based learning.  

a) Nuutila et al. [36] used a seven-step PBL scheme to engage students in solving problems 
in an introductory programming class. 

b) Caceffo et al. [31] used an abbreviated four-step version of PBL and allowed for more 
collaboration between groups. 

 
Different views developing technological skills may make it difficult to transfer effective 
practices to computational science. One important consideration is that computer science 
education is focused heavily on developing good programming practice, whereas computational 
thinking focuses on solving problems [18]. Nuutila, et. al define “computer programming” as “a 
skill of designing, implementing and analyzing computer programs of various scales” [36, p. 
136]. Even though the PBL course described by Nuutila et al. [36] uses problem-based learning, 
problems are a means to learn programming skills rather than explicitly honing problem-solving 
skills. In an effort to introduce students to computational thinking, a professor might suggest that 
a student take an introductory programming course; but the course may not promote 
“computational thinking” directly or completely. For example, faculty at MSU created CMSE 
201 as an opportunity to learn programing through the lens of computational applications [11]. 
Like computer science, the mathematics education community views technology in ways that 
might conflict with computational science goals. To review studies focusing on the effectiveness 
of incorporating technology in mathematics classrooms, Drijvers asks “does digital technology 
really work, why does it work, which factors are decisive in making it work or preventing it from 
working?” [38, p. 2]. This discussion is focused on “does technology work” rather than “how can 
we teach mathematics relevant to technology”. In other words, technology is seen as a tool to 
improve current ways of learning mathematics, rather the object of the lesson itself, which is the 



Proceedings of the 2019 ASEE North Central Section Conference 
Copyright © 2019, American Society for Engineering Education 

12 

case in a computational science classroom. Furthermore, implicit misconceptions about different 
academic fields directly influence the educational goals of different departments. Nuutila et al. 
write that “in other academic areas [aside from computer science], e.g. mathematics and physics, 
the student tries to solve small problems defined by the teacher. There is typically one correct 
solution and the student does not use the solution anywhere” [36, p. 137]. In light of the 
computational thinking taxonomy, this notion is misguided.  An important aspect of modern 
mathematics and physics – and now computational science – is to construct models and 
manipulate data [4, Sec. 3.2], [10]. Furthermore, the category of “systems thinking” in the 
computational thinking taxonomy supports the application and interconnectedness of different 
computational systems, meaning that results are used in different contexts [18]. Misperceptions 
like these may make it difficult to borrow pedagogical methods from other disciplines to teach 
computational science in a way that truly encompasses all of its practices, especially since 
practices are not fully standardized. 

 
Conclusion 
 
Computational science is a new frontier with the potential to reshape science, industry and 
society.  The core elements of computational science are data, modeling and computation, but 
the multidisciplinary field is difficult to describe since it closely related to other fields. 
Furthermore, relevant applications are usually in the context of a scientific or business domain. 
Computational science arguably subsumes the field of data science since it provides new routes 
to scientific discovery by collecting, organizing and analyzing data.  By identifying important 
computational thinking practices, K12 teachers can better prepare students for computationally 
intensive careers and universities can start to develop new courses aimed at developing 
prerequisite mathematical, statistical and computational practices. Many universities have 
created interdisciplinary programs out of mathematics and computer science departments; but 
this approach may limit the ability to fully capture computational science practice, which also 
includes unique ways of thinking about technology and computation. Entirely new departments 
in computational science have also been created in hopes of synthesizing technical skills and 
applications. Relying on existing teaching methods in closely related STEM fields is helpful 
since there is little available research about effective practice in computational science education, 
but expectations around curriculum and skill development in computer science may make it 
difficult to transfer effective practices.   Hence, methods of organizing important practices in 
computational science, such as the computational thinking taxonomy [18] and the curriculum 
guidelines for data science [4], are valuable tools for developing educational programs with 
concrete goals. Building on these frameworks and adopting effective teaching methods such as 
active learning may be a good place to start addressing the lack of empirical research in 
computational science education. 
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